Self-orthogonality of q-ary Images of qm-ary Codes and Quantum Code Construction
نویسندگان
چکیده
A code over GF(qm) can be imaged or expanded into a code over GF(q) using a basis for the extension field over the base field. The properties of such an image depend on the original code and the basis chosen for imaging. Problems relating the properties of a code and its image with respect to a basis have been of great interest in the field of coding theory. In this work, a generalized version of the problem of self-orthogonality of the q-ary image of a qm-ary code has been considered. Given an inner product (more generally, a biadditive form), necessary and sufficient conditions have been derived for a code over a field extension and an expansion basis so that an image of that code is self-orthogonal. The conditions require that the original code be self-orthogonal with respect to several related biadditive forms whenever certain power sums of the dual basis elements do not vanish. Numerous interesting corollaries have been derived by specializing the general conditions. An interesting result for the canonical or regular inner product in fields of characteristic two is that only self-orthogonal codes result in self-orthogonal images. Another result is that image of a code is self-orthogonal for all bases if and only if trace of the code is self-orthogonal, except for the case of binary images of 4-ary codes. The conditions are particularly simple to state and apply for cyclic codes. To illustrate a possible application, new quantum error-correcting codes have been constructed with larger minimum distance than previously known. Index Terms Self-orthogonality, images of codes, trace of codes, quantum codes. Sundeep B. and A. Thangaraj are with the Department of Electrical Engineering in the Indian Institute of Technology Madras, Chennai, India. February 1, 2008 DRAFT
منابع مشابه
On the Unequal Error Protection Capability of a q-ary Image of a Low-Rate q-ary Cyclic Code
An algorithm for finding the unequal error protection (UEP) capability of a q-ary image of a low-rate qm-ary cyclic code is presented by combining its concatenated structure with the UEP capability of concatenated codes. The results are independent of a choice of a basis to be used for expanding an element over GF(qm) into GF(q). A table of the UEP capability of binary images of low-rate Reed-S...
متن کاملOn non-full-rank perfect codes over finite fields
The paper deals with the perfect 1-error correcting codes over a finite field with q elements (briefly q-ary 1-perfect codes). We show that the orthogonal code to the q-ary non-full-rank 1-perfect code of length n = (q − 1)/(q − 1) is a q-ary constant-weight code with Hamming weight equals to qm−1 where m is any natural number not less than two. We derive necessary and sufficient conditions for...
متن کاملNew quantum MDS codes derived from constacyclic codes
Quantum error-correcting codes play an important role in both quantum communication and quantum computation. It has experienced a great progress since the establishment of the connections between quantum codes and classical codes (see [4]). It was shown that the construction of quantum codes can be reduced to that of classical linear error-correcting codes with certain self-orthogonality proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 53 شماره
صفحات -
تاریخ انتشار 2007